52 research outputs found

    Field and Laboratory Studies on Pathological and Biochemical Characterization of Microcystin-Induced Liver and Kidney Damage in the Phytoplanktivorous Bighead Carp

    Get PDF
    Field and experimental studies were conducted to investigate pathological characterizations and biochemical responses in the liver and kidney of the phytoplanktivorous bighead carp after intraperitoneal (i.p.) administration of microcystins (MCs) and exposure to natural cyanobacterial blooms in Meiliang Bay, Lake Taihu. Bighead carp in field and laboratory studies showed a progressive recovery of structure and function in terms of histological, cellular, and biochemical features. In laboratory study, when fish were i.p. injected with extracted MCs at the doses of 200 and 500 μg MC-LReq/kg body weight, respectively, liver pathology in bighead carp was observed in a time dose-dependent manner within 24 h postinjection and characterized by disruption of liver structure, condensed cytoplasm, and the appearance of massive hepatocytes with karyopyknosis, karyorrhexis, and karyolysis. In comparison with previous studies on other fish, bighead carp in field study endured higher MC doses and longer-term exposure, but displayed less damage in the liver and kidney. Ultrastructural examination in the liver revealed the presence of lysosome proliferation, suggesting that bighead carp might eliminate or lessen cell damage caused by MCs through lysosome activation. Biochemically, sensitive responses in the antioxidant enzymes and higher basal glutathione concentrations might be responsible for their powerful resistance to MCs, suggesting that bighead carp can be used as biomanipulation fish to counteract cyanotoxin contamination

    Seasonality of the Transpiration Fraction and Its Controls Across Typical Ecosystems Within the Heihe River Basin

    Get PDF
    Understanding the seasonality of the transpiration fraction (T/ET) of total terrestrial evapotranspiration (ET) is vital for coupling ecological and hydrological systems and quantifying the heterogeneity among various ecosystems. In this study, a two‐source model was used to estimate T/ET in five ecosystems over the Heihe River Basin. In situ measurements of daily energy flux, sap flow, and surface soil temperature were compared with model outputs for 2014 and 2015. Agreement between model predictions and observations demonstrates good performance in capturing the ecosystem seasonality of T/ET. In addition, sensitivity analysis indicated that the model is insensitive to errors in measured input variables and parameters. T/ET among the five sites showed only slight interannual fluctuations while exhibited significant seasonality. All the ecosystems presented a single‐peak trend, reaching the maximum value in July and fluctuating day to day. During the growing season, average T/ET was the highest for the cropland ecosystem (0.80 ± 0.13), followed by the alpine meadow ecosystem (0.79 ± 0.12), the desert riparian forest Populus euphratica (0.67 ± 0.07), the Tamarix ramosissima Ledeb desert riparian shrub ecosystem (0.67 ± 0.06), and the alpine swamp meadow (0.55 ± 0.23). Leaf area index exerted a first‐order control on T/ET and showed divergence among the five ecosystems because of different vegetation dynamics and environmental conditions (e.g., water availability or vapor pressure deficits). This study quantified transpiration fraction across diverse ecosystems within the same water basin and emphasized the biotic controls on the seasonality of the transpiration fraction

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    TDCC: top‐down semantic aggregation for colour constancy

    No full text

    Three-stage carbon release model during macrophyte decomposition

    No full text
    Carbon release during macrophyte decomposing is critical for the carbon cycle in the aquatic ecosystems. Previous mechanic researches have demonstrated the different release rates of nutrients in different stages, e.g., the fast-leaching stage (in initial 4–10 days), the microbe conditioning stage with slow decay rate (from winter to spring with low temperature). Nevertheless, models for predicting these processes are still not available and the conventional used model inherently assumes a constant relative release rate. Here, we conducted a one-year in-situ decomposition experiment using the conventional (net) litterbag technique. The credibility of experimental data is increased by using fresh debris to avoid alternation of material traits caused by the conventional drying pretreatment, which is originally used in experiments for terrestrial debris. Our results demonstrated that the carbon release process showed an obvious three-stage pattern, which can be universally depicted by a piecewise three-stage exponential decaying model (r2 > 0.9). More importantly, contributions of the three key factor (i.e., leaching, microbe and macroinvertebrate) can be explicitly reflected by the corresponding relative release rate (ki, i denote i th decomposition stage), which variate greatly between different stages, with k1/k2 > 11.8 and k3/k2 > 2.63. More importantly, k3 can be further conveniently decomposed into microbe-induced k3-1 and macroinvertebrate-induced k3-2, correspondingly. Also, k3-2 showed an exponential increase with the number of macroinvertebrate (r2 > 0.95). The contributions of the microbe and macroinvertebrate can then be depicted by these two parameters. In conclusion, our model greatly increases the model realism and generality in simulating the carbon release process; Also, the explicit physical meaning of model parameters make the model mechanism clearer. This not only created the chance to further develop a mechanism-based model, but also facilitate the mechanistic study of the impacts of environmental factors (e.g., pH, dissolved oxygen) on k1, k2, k3-1 and k3-2 concerning different kinds of macrophyte, in which the parameters k1, k2, k3-1 and k3-2 acts as important ecological indicators in depicting the relative release rates caused by specific driving forces. These ecological indicators facilitate the future mechanical researches for the impacts of environmental factors on the carbon release

    Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway.

    No full text
    BACKGROUND AND PURPOSE:It has been accepted that AMPK (Adenosine monophosphate-activated protein kinase) activation exhibits many beneficial effects on glucolipid metabolism. Lysophosphatidylcholine (LPC) is an important lysophospholipid which can improve blood glucose levels in diabetic mice and attenuate inflammation by activating AMPK signal pathway in macrophages. Synthetic alkylphospholipids (ALPs), such as miltefosine, is used as an alternate of LPC for the clinical application. Here, we investigated whether miltefosine could have an impact on hepatic steatosis and related metabolic disorders. EXPERIMENTAL APPROACH:Mice were fed with high fat diet (HFD) for 16 weeks to generate an obese model. Next, the obese mice were randomly divided into three groups: saline-treated and miltefosine-treated (2.5 or 5 mg/kg/d) groups. Miltefosine was intraperitoneally administrated into mice for additional 4 weeks plus HFD treatment. KEY RESULTS:It was shown that miltefosine treatment could substantially improve glucose metabolism, prevented hepatic lipid accumulation, and inhibited liver inflammation in HFD-fed mice by activating AMPK signal pathway. In vitro, miltefosine stimulated AMPKα phosphorylation both in time and dose dependent manner and decreased lipid accumulation in liver cells. When a specific AMPK inhibitor compound C was used to treat mice, the antagonistic effects of miltefosine on HFD-induced mouse hyperlipidaemia and liver steatosis were abolished. Treatment with miltefosine also dramatically inhibited the HFD-induced liver inflammation in mice. CONCLUSIONS AND IMPLICATIONS:Here we demonstrated that miltefosine might be a new activator of AMPK signal pathway in vivo and in vitro and be useful for treatment of hepatic steatosis and related metabolic disorders

    Distributions of PAHs, NPAHs, OPAHs, BrPAHs, and ClPAHs in air, bulk deposition, soil, and water in the Shandong Peninsula, China: Urban-rural gradient, interface exchange, and long-range transport

    No full text
    A systematic study of the movement of PAHs (Polycyclic aromatic hydrocarbons) and their derivatives through air, soil, and water is key to understanding the exchange and transport mechanisms of these pollutants in the environment and for ultimately improving environmental quality. PAHs and their derivatives, such as nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), brominated PAHs (BrPAHs) and chlorinated PAHs (ClPAHs), were analyzed in air, bulk deposition, soil, and water samples collected from urban, rural, field, and background sites on the eastern coast of China. The goal was to investigate and discuss their spatiotemporal variations, exchange fluxes, and transport potential. The concentrations of PAHs and their derivatives in the air and bulk deposition displayed distinct seasonal patterns, with higher concentrations observed during the winter and spring and lower concentrations during the summer and autumn. NPAHs exhibited the opposite trend. Significant urban-rural gradients were observed for most of the PAHs and their derivatives. According to the air-soil fugacity calculations, 2–3 ring PAHs, BrPAHs, and ClPAHs were found to volatilize from the soil into the air, while 4–7 ring PAHs, OPAHs, and NPAHs deposited from the air into the soil. The air-water fugacity of the PAHs and their derivatives indicated that surface water was an important source for the ambient atmosphere in Qingdao. The characteristic travel distances (CTDs) and persistence (Pov) for atmospheric transport were much lower than that for the water samples, which may be due to the longer half-lives of PAHs and their derivatives in water. NPAHs and ClPAHs with long transport distances and strong persistence in water could lead to a significant impact on marine pollution

    Seasonal Divergent Tree Growth Trends and Growth Variability along Drought Gradient over Northeastern China

    No full text
    With the increasing temperature and intensified drought, global climate change has profound impacts on tree growth in temperate regions, which consequently regulates terrestrial-atmosphere biogeochemical processes and biophysical feedbacks. Thus, increasing numbers of studies have addressed the long-term annual trends in tree growth and their response to climate change at diverse spatial scales. However, the potential divergence in tree growth trends and growth variability (represented by coefficient of variance) in different seasons across large-scale climate gradients remains poorly understood. Here, we investigated the tree growth trends and growth variability in different seasons across diverse drought conditions in forested regions over northeastern China during the period 1982–2015, using both remote sensing observations and in situ tree-ring measurements. We found clear seasonal divergence in tree growth trends during 1982–2015, and the apparent increase was mainly observed in spring and autumn, attributed mainly to the increase in spring temperature and autumn solar radiation, respectively, but not in summer. The magnitudes of increasing trends in tree growth decrease with the increase of the multi-year average dryness index (MAI) in semi-arid areas (1.5 < MAI < 4.0) in all seasons. We further revealed that the interannual variability in tree growth was much larger in the semi-arid regions than in the humid and semi-humid regions in all seasons, and tree growth variability was significantly and negatively correlated with the variations in temperature and water deficit. Our findings improve our understanding of seasonal divergence in tree growth trends and provide new insights into spatial patterns in forest vulnerability in a warmer and drier climate
    corecore